

Vladimir Lobaskin University College Dublin

Horizon 2020 European Union funding for Research & Innovation Project overview

Horizon 2020 RIA NMBP call "Increasing the capacity to perform nano-safety assessment"

SmartNanoTox: Smart Tools for Gauging Nano Hazards

Overall funding: €8M

Duration: 48 months

Project consortium: 11 partners

Coordinator: University College Dublin

Where we are

• Limited capacity to predict hazard for new materials as the properties of concern are not known

Standard NM characterisation is not sufficiently informative Toxicity mechanisms are not known

- Real dosage/NP state after uptake not known
- Many in vitro toxicity endpoints (e.g. EC50) are irrelevant

Mechanistic understanding of nanotoxicity

New level of complexity:

- Knowing the nanomaterial chemistry and structure is not enough: coating, adsorbed materials, surface energy, dielectric properties may be important
- Nanoparticles use specific ways of systemic distribution, which are unavailable for individual molecules or micron-sized particles. Exposure route can be equally important
- Toxicity and adverse outcomes may be related to molecular perturbation of cell structures/pathways and not direct damage

Mechanistic Understanding of Toxicity

T. E. H. Allen et al., Defining Molecular Initiating Events in the Adverse Outcome Pathway Framework for Risk Assessment. *Chem. Res. Toxicol.* 2014, **27**, 2100–2112

New toxicity assessment paradigm

Pathway-based assessment:

Understanding of bionano interactions is needed to address Molecular Initiating Events, systemic transport

Project objectives

- Identify main **pulmonary adverse outcomes** induced by common NMs, and identify associated MIE, KEs and toxicity pathways leading to AO.
- Establish relationships between physchem properties of NMs and KEs steering the TP leading to AO, and suggest descriptors for grouping of NMs according to toxicological mode-of-action
- Create a **database of bionano interactions** that will enable development of read-across and QSAR tools for the toxicity assessment of new NMs
- Develop a smart screening approach, where predictions of toxicity of a NM can be made on the basis of purely computational or limited *in vitro* screening tests focused on crucial bionano interactions

SmartNanoTox approach

SmartNanoTox methods

Molecular simulation

In vitro exposure

In vivo exposure

SmartNanoTox methods

Omics, systems biology

Analysis workflow

Toxicity readouts **Biochemical** characterisation of MIE/KE In vitro Secretome **Targeted proteomics** RPPA Infer signal transduction Multiplexed ELISA networks that connect NP corona, secretome and regulated signaling networks In vivo with toxicity pathways Corona Proteomics Lung lavage Computational network inference by Bayesian variable selection

NP tracking, post-uptake characterisation

Beyond the state-of-the-art

S&T Objective	SmartNanoTox offers:		
Relating the NM descriptors	AO pathway-based mechanism-aware		
to the toxicity end point	intelligent QSARs		
Determining the hazardous	In vivo study of the acute and chronic		
effect of engineered NMs	toxic effects, with relation to the		
	adverse outcome, in depth analysis of		
	the pathologies		
Understanding of the	The biomolecular corona of the NPs will		
mechanisms underlying the	be analysed, NMs will be tracked inside		
observed adverse effects	the biological fluids and molecules		
from engineered	involved in bionano interactions		
nanomaterials	identified		
Create basis for grouping of	Identify generic properties responsible		
engineered nanomaterials by	for pulmonary toxicity for carbonaceous		

- Described and validated respiratory AOPs
- Database of bionano interactions for 60+ NMs with proteins and lipids
- Identified NM properties of concern
- Mechanism-aware toxicity assessment tools
- Methods for NM tracking inside the tissues and postuptake characterization
- Replacement of animal experiments by in vitro/in silico tests

		In Vitro Lung Models	
MIEs / KEs Detection Assays		Cell free (Surfactant)	Alveol. cells
Disruption of lung surfactant (LS) functionality	Constrained drop surfactometer, MD simulation	\checkmark	
NM-lipid interaction	Microscopy (FRET, FRET-FMS, pFMS, DLS, EPR), MD simulation	\checkmark	\checkmark
Cellular uptake of NMs	Microscopic localization (pFMS)	\checkmark	\checkmark
Lysosomal destabilization	Membrane leakage, cell viability, MD simulation	\checkmark	\checkmark
Oxidation of cell membrane	Antioxidant depletion, 'Band Gap' calculation	\checkmark	
ROS formation	Redox sensitive dyes & marker genes, Electron paramagnetic resonance (EPR)	\checkmark	\checkmark
Inflammatory response	Inflammatory gene & protein expression		\checkmark
Frustrated phagocytosis	Lysosomal damage, inflammasome activation		\checkmark
Acute phase response	Release of acute phase reactants		\checkmark
Mutagenicity/Genotoxicity	Marker gene & protein expression		\checkmark

NP-protein interactions Bio/Nanoinformatics approach

Prediction of corona content using NP and protein descriptors:

Sequence descriptors (PepStat), 3D structure (I-TASSER)

NP-protein interactions Bio/Nanoinformatics approach

Prediction of Key Events of the AOP using protein descriptors:

Experimental data from Walkey et al. ACS Nano 2014. Kamath et al. Current Topics in Medicinal Chemistry, 2015

NP-protein interactions Bio/Nanoinformatics approach

