Modelling of Bio-Nano Interactions for Predictive Toxicology

Hender Lopez, Stefano Poggio, David Power, Erik Brandt, Alexander Lyubartsev, Vladimir Lobaskin

Basel, November 2017

Horizon 2020 European Union funding for Research & Innovation

Horizon 2020 RIA NMBP call "Increasing the capacity to perform nano-safety assessment"

SmartNanoTox: Smart Tools for Gauging Nano Hazards

Project consortium: 11 partners

Coordinator: University College Dublin

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grand agreement No. 686098 www.smartnanotox.eu

Horizon 2020 European Union funding for Research & Innovation

Nanoparticle Identity

M. P. Monopoli et al. Nature Nanotechnology 7, 779-786 (2012)

Relevant Interactions

At different stages of systemic NP distribution we can observe

- NP protein, NP lipid interaction
- NP NP and NPB NPB (NPB biomolecule complex)
- NP membrane and NPB membrane
- NP DNA / RNA
- NP glycans

Multiscale Modelling Approach

FP7 MembraneNanoPart (2013-15) H2020 SmartNanoTox (2016-20)

Multiscale Modelling Approach

Attempt to model protein corona formation

4. Further coarse-graining

5. Competitive adsorption

Model of protein globule

Native structure from Protein Data Bank (PDB) \rightarrow 1N5U CG HSA \rightarrow one bead per residue at the alpha carbon \rightarrow 11-bead model

Protein structure prediction

Simulation settings

- All simulations → ESPResSo
- Unit of Energy: $k_B T$ (T=310 K)
- Unit of length: nm
- Ionic strength: 100 mM
- Angle grid every 5°: 36x72=2592 points
- NP charge: 0, -0.05 C/m²
- NP radii between 5 nm and 500 nm
- Residue charges: LYS and ARG +e, ASP and GLU –e and HIS +0.5e (physiological conditions)

http://www.espressomd.org

Model of a Nanoparticle

Two-layer model: surface beads and bulk are treated differently

Bulk beads: van der Waals interaction (Hamaker procedure) $U_{bi}^{\nu dW}(r) = -\frac{A}{12k_BT} \left[\frac{4R_1R_2}{r^2 - (R_1 + R_2)^2} + \frac{4R_1R_2}{r^2 - (R_1 - R_2)^2} + 2\ln\frac{r^2 - (R_1 - R_2)^2}{r^2 - (R_1 + R_2)^2} \right]$ $1 - \text{NM}, 3 - \text{AA}, \quad A = \frac{3}{4}kT \left(\frac{\epsilon_1 - \epsilon_2}{\epsilon_1 + \epsilon_2}\right) \left(\frac{\epsilon_2 - \epsilon_3}{\epsilon_2 + \epsilon_3}\right)$ $2 - \text{water} \qquad + \frac{3h\nu_e}{8\sqrt{2}} \frac{(n_1^2 - n_3^2)(n_1^2 - n_3^2)}{(n_1^2 + n_3^2)^{1/2} \{(n_1^2 + n_3^2)^{1/2} + (n_2^2 + n_3^2)^{1/2} \}}$

Dispersion forces

Hamaker constants NM-water-AA, 10⁻²⁰ J

ARG	HIS	LYS	ASP	GLU	SER	THR	ASN	GLN	CYS
4.70	5.40	3.23	5.42	4.36	4.21	3.70	5.04	4.40	28.88
GLY	PRO	ALA	VAL	ILE	LEU	MET	PHE	TYR	TRP
4.28	3.12	3.29	2.82	2.79	2.70	4.25	5.20	5.26	6.49

AA - gold

ARG	HIS	LYS	ASP	GLU	SER	THR	ASN	GLN	CYS
7.34	8.13	5.53	8.16	6.92	6.75	6.12	7.73	6.98	31.74
GLY	PRO	ALA	VAL	ILE	LEU	MET	PHE	TYR	TRP
6.83	5.40	5.61	5.00	4.97	4.84	6.79	7.91	8.43	9.37

 $AA - TiO_2$

Model of interaction

Two-layer model. Surface beads:

R = 0.5 nm

CG PMF vs All-atom MD PMF

Gold—AA, TiO₂ – AA potentials (Brandt, Lyubartsev, 2016)

Adsorption energies

HSA: single orientation, R = 5 nm, rutile TiO₂

Major short-range contribution comes from surface interactions

Adsorption energies

HSA on Rutile TiO₂ NP

Preferred protein orientation: HSA R= 5 nm R= 50 nm

Maps do not vary much for different charges but depend on NP size

Preferred protein orientation: HSA

R = 5 nm

R=50 nm

Ranking proteins by adsorption energy Increasing affinity

NP Radius, nm	Rank									
	1	2	3	4	5	6				
5	A2M	lgG	Fib	Tra	A1A	HSA				
20	Fib	A2M	lgG	Tra	A1a	HSA				
50	Fib	A2M	lgG	Tra	A1A	HSA				
100	Fib	lgG	A2M	Tra	A1A	HSA				
500	Fib	lgG	A2M	Tra	A1A	HSA				
	Fib	A2M	lgG	A1A	Tra	HSA				
Large Small Agrees with measured affinity of HSA, Fib and γ–globulins to Gold NPs.										

De Paoli et al. [ACS Nano, 4, 365 (2010)] – Vroman effect.

Second coarse-graining

From united-atom to united-aminoacid model HSA: 11 beads. PMF protein bead – NP calculated by minimising differences to whole protein PMF

Second coarse-graining

From united-atom to united aminoacid model: Optimisation of the model using a genetic algorithm

Fitness:
$$S = \Sigma_{i,j} \left(E_{i,test}(\theta_i, \phi_j) - E_{i,test}(\theta_i, \phi_j) \right)^2$$

NP-protein interactions

Attraction depends on the NP density/dielectric properties:

NP adsorption affinity ranking with HSA: $E_{ad}^{Au} > E_{ad}^{TiO_2} > E_{ad}^{CdSe} > E_{ad}^{SiO_2} > E_{ad}^{CNT}$

Protein descriptors

Intrinsic descriptors

- Sequence descriptors: e.g. number of acidic groups, mass
- Structure descriptors: size, aspect ratio, solvent accessible area, van der Waals energy

Extrinsic descriptors

- Charge
- Dipole moment
- Protein-protein interactions

Nanoparticle descriptors

Intrinsic descriptors

- Chemical composition: core, shell
- Bandgap
- Dielectric permittivity
- Hamaker constant
- Ionisation potential
- Molecular mass, crystalline structure, size, shape Extrinsic descriptors
- Charge
- Dipole moment
- Hydration energy
- Dissolution rate

Descriptors of bionano interaction

Extrinsic descriptors

- Binding energy for molecular groups: aminoacids, glucose, alkyl groups
- Binding energy for biomolecules: proteins, lipids, sugars, DNA
- Ranking by binding energy
- Ranking by cell association / uptake
- Ranking by direct damage: membrane, protein
- Corona content: total protein adsorbed

•

Summary

- Understanding bionano interface is key to progress in mechanistic understanding of biological action of NPs
- Protein binding can be reversible (light materials, small proteins, small NPs) or irreversible
- Evaluation of descriptors can be automated (work for NanoCommons)
- Need to identify NP and protein descriptors for relevant for interactions