Comparing Nanomaterial Toxicity with Lung Cells Cultured under Air-Liquid Interface and Submerged Conditions

Dr. Yaobo Ding

Inhaled Particles XII, 25 September 2017
Cell exposure at the Air-Liquid Interface

Submerged exposure

Air-liquid interface exposure

Physiological realistic testing!

Lenz et al., Am J Respir Cell Mol Biol., 2014
Cell exposure at the Air-Liquid Interface

4-5 µm

Rajiv Dhand 2004

https://www.youtube.com/watch?v=1KdkmgnmzWY
https://www.youtube.com/watch?v=1lA_SSScMeE
Suspension preparation protocol

Nanopowders → Suspended in pure water → Vortex shaker

(NaCl)

Dynamic light scattering → Sonication

CPC Comprehensive Pneumology Center

HelmholtzZentrum münchen German Research Center for Environmental Health
Uniform & fast delivery of NM aerosols

Fluorescein Concentration

Nebulization

Fluorescein Concentration (plate reader)

QCM deposition

Mean deposition: 49.5%
Insert-insert variability: 3.4%
Cell growth and exposure conditions

<table>
<thead>
<tr>
<th></th>
<th>Submerged</th>
<th>Sub-Insert</th>
<th>ALI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate type</td>
<td>6-well plate</td>
<td>6-well insert</td>
<td>6-well insert</td>
</tr>
<tr>
<td>Cell type</td>
<td>A549 IL-8</td>
<td>A549 IL-8</td>
<td>A549 IL-8</td>
</tr>
<tr>
<td>Seeding surface</td>
<td>9.6 cm²</td>
<td>4.2 cm²</td>
<td>4.2 cm²</td>
</tr>
<tr>
<td>Seeding Nr.</td>
<td>1 mil.</td>
<td>1 mil.</td>
<td>1 mil.</td>
</tr>
<tr>
<td>Growth time</td>
<td>3 day</td>
<td>4 day</td>
<td>4d+1d (in air)</td>
</tr>
<tr>
<td>Apical Med.vol.exp.</td>
<td>1 ml</td>
<td>1 ml</td>
<td>0 ml</td>
</tr>
<tr>
<td>Med. Height</td>
<td>ca. 1 mm</td>
<td>ca. 2.4 mm</td>
<td>0.01 mm (ZnO suspension)</td>
</tr>
<tr>
<td>Nanomaterial</td>
<td>ZnO NM110</td>
<td>Type</td>
<td>Size, TEM</td>
</tr>
<tr>
<td></td>
<td>50-150 nm</td>
<td>12 m²/g</td>
<td></td>
</tr>
</tbody>
</table>
Cell viability (WST-1 assay), 24h

Viability, % of control vs. Dose, cm²/cm²

- **Air-liquid Interface**
- **Submerged-Conventional**
- **Submerged-Insert**

Dose, cm²/cm²

0 0.5 1 1.5 2 2.5

Viability, % of control

0% 20% 40% 60% 80% 100% 120% 140%

(20 µg/cm²)
(80 µg/ml)
Cytotoxicity (Lactate Dehydrogenase release), 24h

Cytotoxicity, % of high control

Dose, cm²/cm²

Air-liquid Interface

Submerged-Insert

Submerged-Conventional

(20 µg/cm²)

(80 µg/ml)
Interleukin-8 induction, 24h

- **Sub-Insert**
- **Air-Liquid Interface**

Graph:
- Y-axis: IL-8 release, fold of control
- X-axis: (Nominal) dose, cm²/cm²

- Data points for Sub-Insert:
 - 0 (Nominal) dose: 0 fold of control
 - 0.5: 2 fold of control
 - 1: 15 fold of control
 - 1.5: 30 fold of control
 - 2: 25 fold of control
 - 2.5: 0 fold of control

- Data points for Air-Liquid Interface:
 - 0 (Nominal) dose: 0 fold of control
 - 0.5: 2 fold of control
 - 1: 10 fold of control
 - 1.5: 20 fold of control
 - 2: 5 fold of control
 - 2.5: 0 fold of control

Notes:
- Sub-Insert data points show a significant increase in IL-8 release with increasing dose.
- Air-Liquid Interface data points show a less pronounced increase in IL-8 release.

Additional Information:
- Nominal dose: (20 µg/cm²)
- Concentration: (80 µg/ml)

Institution:
- CPC Comprehensive Pneumology Center
- HelmholtzZentrum münchen German Research Center for Environmental Health
Calculation of Sedimentation

(Bulk density: 5.6 g/cm³)

Effective density

- 4.0
- 3.5
- 3.0
- 2.5
- 2.0
- 1.5 g/cm³

Sedimentation distance, mm

ZnO agglomerate size, nm

TEM

DLS

ca. 250 nm

*Colloid and Surface Chemistry, Duncan J. Shaw, 4th edition, 1992 p.21-25
Summary

I. Uniform and efficient aerosol delivery was achieved using VITROCELL- CLOUD (ALICE-CLOUD) with 5 min exposure time. Suspension quality is controlled for aerosolization.

II. Cell viability decreased and LDH/IL-8 induction increased when dose increased.

III. ZnO nanoparticle dose-response curve of lung epithelial cells varied for submerged (sharp) and air-liquid interface (broad) exposures.

IV. Cells grown in plastic surface (well) and at porous insert surface behaved differently:

 I. dose rate

 II. Cells are more sensitive in plastic wells

 III. both
Thank you!

Group Pulmonary Aerosol Delivery
Dr. Otmar Schmid
Members:
Andreas Schröppel
Alexander Erl
Winfried Mölle
Lin Yang
Patrick Weindl
Clara Wimmer
Paula Mayer

VITROCELL Systems GmbH, Dr. Tobias Krebs
Reference

Vitro-cell ALICE video: https://www.youtube.com/watch?v=1KdkmqmcxWY

Aeroneb video: https://www.youtube.com/watch?v=1lA_SSScMeE