

## Prediction of acute lung toxicity of impregnation products using an *in vitro* method based on lung surfactant inhibition

Jorid B. Sørli, Yishi Huang, Emilie Da Silva, Jitka S. Hansen, Søren T. Larsen and Karin S. Hougaard The National Research Centre for the Working Environment, Copenhagen, Denmark

#### Background

Impregnation products (IPs) are used to make surfaces water- and dirt-repellent. Accidental inhalation of IPs causes acute inhalation toxicity yearly. Lung surfactant (LS) is an important target.

Twenty-one IPs, of which 6 have been involved in human acute lung toxicity, were tested *in vitro* and *in vivo* and the results compared.

A robust *in vitro* test will reduce the need for animal experimentation.

### In vitro lung surfactant function

Lung surfactant function was assessed in an "artificial lung", the constant flow through set-up of the Constrained Drop Surfactometer (CDS).

A "breathing" drop of LS was continuously exposed to the IP, mimicking the physiological conditions in the lungs. The LS function was continuously monitored.



| Product                 | In vitro | In vivo | Correlation | Human<br>toxicity |
|-------------------------|----------|---------|-------------|-------------------|
| "Wood impregnation"     | Yes      | Yes     | Yes         | Yes               |
| "Stain repellent super" | Yes      | Yes     | Yes         | Yes               |
| "Liquid stain           |          |         |             |                   |
| protection"             | Yes      | Yes     | Yes         | Yes               |
| "Faceal oleo MG"        | Yes      | Yes     | Yes         | Yes               |
| "HG textile"            | Yes      | Yes     | Yes         | Yes               |
| "HG leather "           | Yes      | Yes     | Yes         | Yes               |
| "Antismuds"             | Yes      | Yes     | Yes         | -                 |
| "Footwear protector"    | Yes      | Yes     | Yes         | -                 |
| "Nakano impregnation"   | Yes      | Yes     | Yes         | -                 |
| "Non-absorbing floor    |          |         |             |                   |
| materials"              | Yes      | Yes     | Yes         | -                 |
| "Rim sealer"            | Yes      | Yes     | Yes         | -                 |
| "Stain repellent nano"  | Yes      | Yes     | Yes         | -                 |
| "Stain repellent"       | Yes      | Yes     | Yes         | -                 |
| "Bath and tiles"        | No       | No      | Yes         | -                 |
| "Faceal oleo HD"        | No       | No      | Yes         | -                 |
| "Special textile        |          |         |             |                   |
| coating"                | No       | No      | Yes         | -                 |
| "Textiles and leather   |          |         |             |                   |
| concentrate"            | No       | No      | Yes         | -                 |
| "Textiles and leather"  | No       | No      | Yes         | -                 |
| "Car glass"             | Yes      | No      | No, false + | -                 |
| "Footwear repel"        | Yes      | No      | No, false + | -                 |
| "Performance repel"     | Yes      | No      | No, false + | -                 |

#### In vivo acute toxicity

The breathing patterns of mice exposed to IPs were monitored. Acute toxicity was observed as a sudden and irreversible drop in tidal volume (VT).



#### Conclusion

# The *in vitro* method can identify all the products that cause acute toxicity *in vivo*.

*In vitro* inhibition of LS function is useful for evaluation of the inhalation toxicity of IPs and can therefore reduce the need for testing on animals.

Funded by the Danish 3R center and SmartNanoTox EU project