

Vladimir Lobaskin University College Dublin

Horizon 2020 European Union funding for Research & Innovation

Project overview

Horizon 2020 RIA NMBP call "Increasing the capacity to perform nano-safety assessment"

SmartNanoTox: Smart Tools for Gauging Nano Hazards

Overall funding: €8M

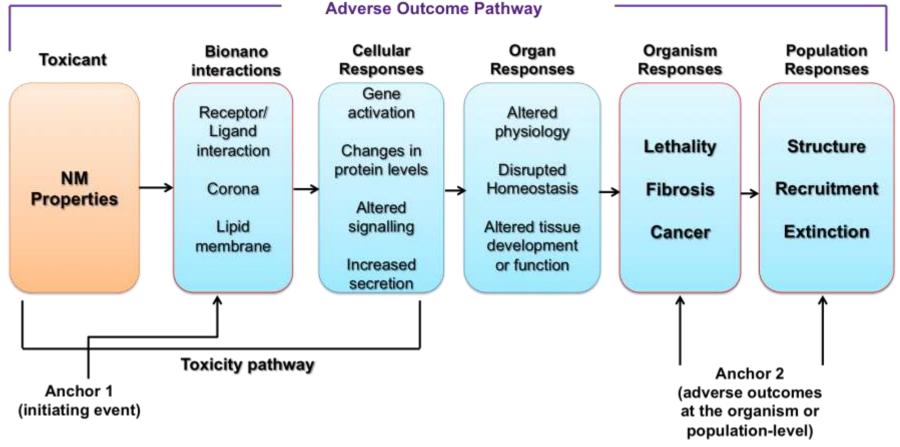
Duration: 48 months

Project consortium: 11 partners

Coordinator: University College Dublin

German Research Center for Environmental Health

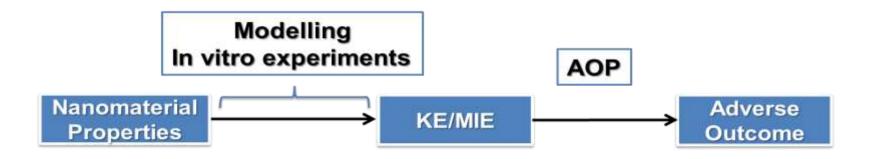
Where we are


• Limited capacity to predict hazard for new materials as the properties of concern are not known

Standard NM characterisation is not sufficient for predictions

Toxicity mechanisms are not known

- Keal dosage/NP state after uptake not known
- Many in vitro toxicity endpoints (e.g. EC50) are irrelevant


Mechanistic Understanding of Toxicity

T. E. H. Allen et al., Defining Molecular Initiating Events in the Adverse Outcome Pathway Framework for Risk Assessment. *Chem. Res. Toxicol.* 2014, **27**, 2100–2112

New toxicity assessment paradigm

Pathway-based assessment:

Understanding of bionano interactions is needed to address Molecular Initiating Events, systemic transport

Project objectives

- Identify main **pulmonary adverse outcomes** induced by common NMs, and identify associated MIE, KEs and toxicity pathways leading to AO.
- Establish relationships between physchem properties of NMs and KEs steering the TP leading to AO, and suggest descriptors for grouping of NMs according to toxicological mode-of-action
- Create a **database of bionano interactions** that will enable development of read-across and QSAR tools for the toxicity assessment of new NMs
- Develop a smart screening approach, where predictions of toxicity of a NM can be made on the basis of purely computational or limited *in vitro* screening tests focused on crucial bionano interactions

Smart Tools for Gauging Nano Hazards

- Described and validated respiratory AOPs
- Database of bionano interactions for 60+ NMs with proteins and lipids
- Identified NM properties of concern
- Mechanism-aware toxicity assessment tools
- Methods for NM tracking inside the tissues and postuptake characterization
- Replacement of animal experiments by in vitro/in silico tests

Project outcomes

Deliverables/ Exploitation Pathways	QSAR (Tox) Models	Simulation Potentials	Simulation Models	Simulation Codes
Industrial / Commercial	+	+	+	+
Regulatory Agencies	+			
Interaction with other EU-funded projects	+	+	+	
Training courses	+	+	+	+

SmartNanoTox outcomes 2018-20: Research

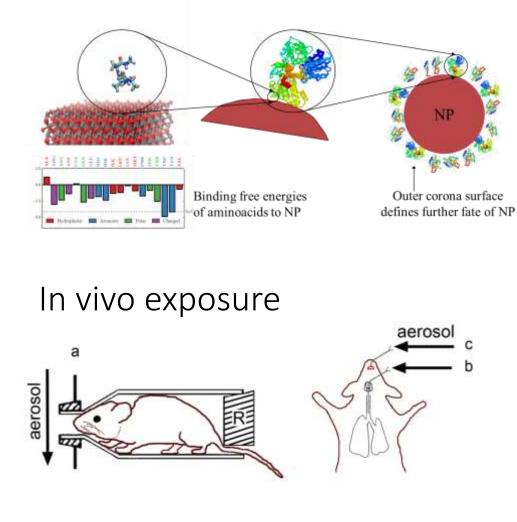
- Description of 7 respiratory AOPs, KE/MIE
- Gene expression profiles for *in vivo* respiratory exposure
- Novel ALI systems to imitate realistic exposure conditions
- Novel analysis protocols for inference of GRNs from transcriptomics data, identification of Core Regulatory Genes
- Demonstration of equivalence between rat/mouse/human models

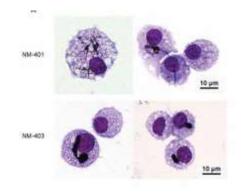
Project outcomes: Research

- Novel NM labelling techniques
- Novel protocols for corona analysis
- Novel algorithms for image analysis / colocalization
- Protein corona-based NM fingerprints
- NM tracking techniques, post-uptake characterisation data
- Atomistic, coarse-grained force fields for common materials (30 materials)
- Multiscale simulation tools for bionano-interface
- Novel advanced NM and protein descriptors (over 30 new descriptors, 60 materials)
- Publicly available database of bionano interactions

Project outcomes 2018-20: Industry/Regulation

- Development and validation a novel mechanism-aware testing strategy that can be used for risk assessment of new NMs
- Novel ALI systems imitating realistic exposure conditions
- Demonstration of mapping inhalation-instillation
- Demonstration of equivalence between rat/mouse/human models
- Novel toxicity endpoints bound to *in vivo* AOPs
- Novel in vitro assays targeting MIE/KE based on reporter gene

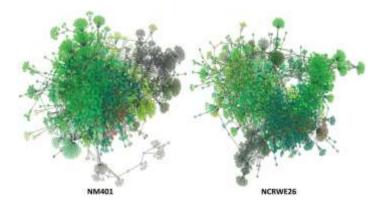

Project outcomes 2018-20: Industry/Regulation


- Elucidation of toxicity mechanisms for oxides, carbonaceous materials
- Creation of basis for grouping NMs by their ability to induce specific AOPs
- Creation of basis for read-across and safety by design through identification of NM properties of concern
- Mechanism-aware QSARs relating NM properties to biological activity
- Database of NM properties, bionano interactions

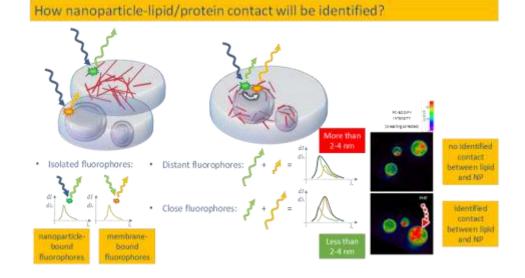
SmartNanoTox methods

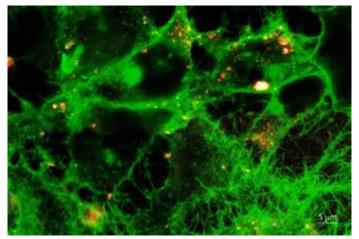
Molecular simulation

In vitro exposure

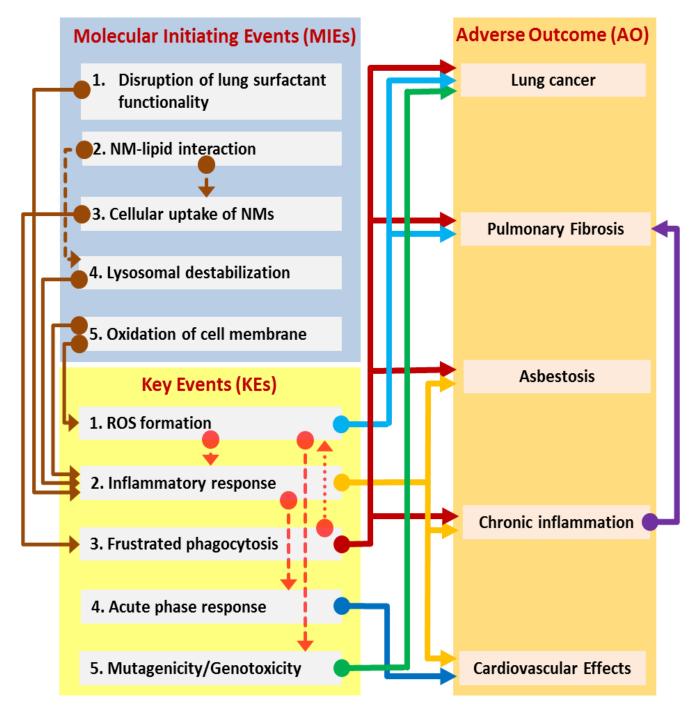


SmartNanoTox methods


Omics, systems biology

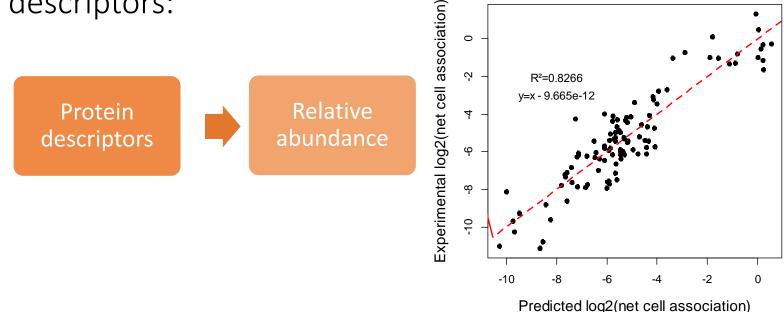

Analysis workflow

Toxicity readouts Biochemical characterisation of MIE/KE In vitro Secretome Targeted proteomics + RPPA Infer signal transduction Multiplexed ELISA networks that connect NP corona, secretome and regulated signaling networks In vivo with toxicity pathways **Corona Proteomics** Lung lavage Computational network inference by Bayesian variable selection



NP tracking, post-uptake characterisation

NP-protein interactions Bio/Nanoinformatics approach


Prediction of corona content using NP and protein descriptors:

Sequence descriptors (PepStat), 3D structure (I-TASSER)

NP-protein interactions Bio/Nanoinformatics approach

Prediction of Key Events of the AOP using protein descriptors:

Experimental data from Walkey et al. ACS Nano 2014. Kamath et al. Current Topics in Medicinal Chemistry, 2015