

SmartNanoTox

SmartNanoTox Project Online Conference, 24 June 2020

Mechanisms of toxicity related to surface activity, and shape-induced cell-particle interaction

Luc Ferrari

Institut Jean Lamour, UMR CNRS 7198, Université de Lorraine, Nancy, France

Horizon 2020 European Union funding for Research & Innovation

Cells, cytotoxicity

Transcriptomic protocol, simplified

1/4 IC₅₀ Nanomaterial

Proteomic protocol, simplified

ROS–Cytotoxicity/Cytotoxicity-Inflammatory Correlations

Not all of the observed cytotoxicity (reduction in viability) is due to nanomaterial-induced ROS
 Cytotoxicity (viability) predicts acute lung inflammation (mouse), but only for some of the nanomaterials

HelmholtzZentrum münchen

German Research Center for Environmental Health

O. Schmid

Response			Enrichment score	
Functional categories	Canonical pathways	ZnO NM110	ZnFe ₂ O ₄ NRCWE-021	
Stress response	Mitochondrial dysfunction			
	Oxidative phosphorylation			
	 mTOR signaling 			
	 NRF2-mediated oxidative stress response 			
	Sirtuin signaling			
Cell cycle/	PI3K/AKT signalling			
proliferation	VEGF signaling			
Protein synthesis/	EIF2 signaling			
modification	 Regulation of eIF4 and P70S6K signaling 			
	Protein ubiquitination pathway			
	Unfolded protein response			
Cell mobility	Paxillin signaling			
	Integrin signaling			
Lipid homeostasis	Superpathway of cholesterol biosynthesis			
Cell modelling	Actin cytoskeleton signaling			
Cancer	Cancer drug resistance by drug efflux			
Metal exposure • Iron homeostasis signaling pathway response				

TiO2, anatase vs rutile, dysregulated genes in NR8383

Genes	Genes name	FC (exposure to anatase)	FC (exposure to rutile)
Cxcl2	Chemokine (C-X-C motif) ligand 2	63.36	71.32
Slpi	Secretory Leukocyte Peptidase Inhibitor	51.27	31.19
Slpil3	Secretory Leukocyte Peptidase Inhibitor 3	49.57	28.27
Tac4	Tachykinin 4	42.53	56.20
Tbkbp1	TBK1 Binding Protein 1	23.24	24.43
Phf19	PHD Finger Protein 19	20.03	20.33
Pla2g2d	Phospholipase A2 Group IID	-31.56	-56.16
Dynlt3	Dynein Light Chain Tctex-Type 3	-31.57	-83.03
Cybb	Cytochrome B-245 Beta Chain	-36.61	-85.31
Calcr	Calcitonin Receptor	-36.77	-100.62

TiO₂:3 cm²/cm²

p-value < 0,05, FC > 1,5

Gene ID	FC <i>sub</i>	FC ALI	FC <i>nose</i>	Protein	Biological fonction
Ccl4	3,92	2,12	1,76	C-C Motif Chemokine Ligand, 4	inflammatory response
Cxcl2	63.36	3,16	3.72	C-X-C Motif Chemokine Ligand 2	chimiotaxis, inflammatory response
Ccl3	3.56	_	1.94	C-C Motif Chemokine Ligand, 3	inflammation
Mmp7	2.72	_	2.66	Metalloproteinase 7	cell division, inflammation
Ccl7		1,53	4,8	C-C Motif Chemokine Ligand, 7	inflammatory response

Functionalisation effects on the regulated answer to CNTs, in NR8383

Functionalisation effects on the regulated response to NMs, in NR8383

Cytokines expression in NR8383 after exposure to NM

Functionalisation effects on the regulated response to NMs, in NR8383

SW vs MW effects on the regulated answer to NMs, in NR8383

- 3 Enrichment score 6

Time = 4h Doses: SWCNT = 11 cm²/cm² MWCNT = 1 cm²/cm²

Cells	Canonical pathways				
	SWCNT (NRCWE-055)	MWCNT (NRCWE-006)			
	Mitochondrial Dysfunction	Sirtuin Signaling Pathway			
THP-1	Oxidative Phosphorylation	mTOR Signaling			
Human	Sirtuin Signaling Pathway	Regulation of eIF4 and p70S6K Signaling			
	EIF2 Signaling	EIF2 Signaling			
	mTOR Signaling	Sumoylation Pathway			
NR8383	EIF2 Signaling	EIF2 Signaling			
Rdl	Mitochondrial Dysfunction	Protein Ubiquitination Pathway			
	Oxidative Phosphorylation	Sirtuin Signaling Pathway			
	Sirtuin Signaling Pathway	Oxidative Phosphorylation			
	mTOR Signaling	Mitochondrial Dysfunction			

Proteomic primary analysis of SW vs MW effects in NR8383

S Nahle, PhD defense, 2019

KEs and AOs for some MWCNT

CNT length effect on IC₅₀, NR8383, WST-1

CNT hydroxylation effect on IC₅₀, NR8383, WST-1

CNT carboxylation effect on IC₅₀, NR8383, WST-1

Reduction of graphene oxide effect on IC₅₀, NR8383, WST-1

Reduction status of GO: NRCWE-058<NRCWE-060<NRCWE-059

Thank you for your attention!

Horizon 2020 European Union funding for Research & Innovation