

3DEXPERIENCE[®]

V₊R

Prediction of NM toxicity from intelligent quantitative structureactivity relations (iQSAR)

Dr Marc Meunier

Senior Scientific Consultant and BIOVIA Fellow Dassault Systèmes, BIOVIA, Cambridge, U.K.

QNTR

AGENDA

- Introduction:
 - Dassault Systèmes & BIOVIA
 - QNTR
- Toxicity Data sets
- Nanomaterials and Atomistic models
- Types and Classes of Descriptors
- Predictive Models
- Conclusion

BIOVIA

#1 2018 WORLD'S most sustainable Dassault Systèmes A purpose-driven company Combining Art, Science & Technology for a more sustainable world 35 35 35 SDEXCITE CENTRICPLM ENDVIR 20,000 passionate people Long-term driven al & Collaborativo 140 nationalities Majority shareholder control 195 sites Revenue: €4.056 millions* One global R&D / 69 labs Operating margin: 32%* *Figures as of FY 2019 / Non-IFRS 12,600 partners imulation Apps Software, Technology & Architecture 3 SDVIA 35 **Content & Online services** Sales 198 3D 1989 3D DMU 1999 3D PLM 2012 3DEXPERIENCE 2020 Virtual Twin Consulting & System Integrators (C&SI) platform Experience of Design Digital Product Lifecycle Education Mock-up Management SOCIETURE Humans Research Virtual worlds oxtend and improve the 270,000 customers Real world 11 industries in 140 countries 25 million users Game-changing **3DEXPERIENCE** platform SYSTEMES

BS SOLIDWORK BS CATIA

3S GEOVIA

Dassault Systèmes **BIO**VIA

- Focused on Supporting Science-Driven Companies
- Providing integrated, enterprise software experiences
- Delivering the breath and depth to cover the entire product life cycle

Scientific Informatics	Transform Scientific Data into Knowledge
Molecular Modeling & Simulation	Foster Innovation with In Silico Design
Data Science	Drive Knowledge-based Decisions
aboratory Informatics	Optimize Lab Productivity and Compliance
Formulation Design	Accelerate Product Launches
Quality & Compliance	Drive Data-centric Quality Excellence in BioPharma
Manufacturing Analytics	Empower Production Operations in Process Industries

Quantitative Structure-Activity Relationship (QSAR)

Conditions: Y observations (Dependent variable)

X parameters (Independent variable)

Objective: Correlate Y with $X_1, X_2 \dots$ $Y = f(\alpha X_1 + \beta X_2 + \dots)$

Challenge: Variance is spread over X parameters Find the QSAR signal ... in a huge field of variance

Smooth muscle apoptosis= $2.26(\pm 0.72) - 10.73(\pm 1.05)I_{\text{Fe}_2\text{O}_3} - 5.57(\pm 0.98)I_{\text{dextran}} - 3.53(\pm 0.54)I_{\text{surface charge}}$

Quantitative Nanostructure-Toxicity Relationship

Applying quantitative structure–activity relationship approaches to nanotoxicology: Current status and future potential

David A. Winkler $^{a,b,*},$ Enrico Mombelli c, Antonio Pietroiusti d, Lang Tran e, Andrew Worth f, Bengt Fadeel g, Maxine J. McCall h

Methodology

- ► Tox Dataset I: Neutro Ball Cells
- Descriptors
 - > Experimental setup
 - ▷ NMs Phys-Chem properties
 - ⊳ Computed
- ► Set of 44 NMs
- ► ML models (GFA, NNs, etc.)

- Tox Dataset II: Inflammation
- Descriptors
 - > NMs Phys-Chem properties
 - Computed Eads
- ➢ Set of 35 NMs
- > ML models (GFA, NNs, etc.)

Bill of Materials...

Nanomaterials	Registration	NM ID CODE	Size data (nm)	Remarks
Mitsui-7; MWCNT; lot # 061220-24	KAJ	NRCWE-006	5 um long	powder
Cheaptubes MWCNT	KAJ	NRCWE-007	15 nm long	powder
TiO2-Rutile, 99% purity, stock#5485MR	ATS	NRCWE-024	50 nm	powder
TiO2 Pure, Pro.no:Tip-02-30	ATS	NRCWE-025	80 nm	powder
Pristine	PJA	NRCWE-040	8-15 nm	powder
Functionalized -OH	PJA	NRCWE-041	8-15 nm	powder
Functionalized -COOH	PJA	NRCWE-042	8-15 nm	powder
Pristine	PJA	NRCWE-043	>50 nm	powder
Functionalized -OH	PJA	NRCWE-044	>50 nm	powder
Functionalized -COOH	PJA	NRCWE-045	>50 nm	powder
Pristine	PJA	NRCWE-046	13-18 nm	powder
Functionalized -OH	PJA	NRCWE-047	13-18 nm	powder
Functionalized -COOH	PJA	NRCWE-048	13-18 nm	powder
Functionalized -NH2	PJA	NRCWE-049	13-18 nm	powder
Pristine >95 %, ultrapure	KBK	NRCWE-051	OD: 1-2nm; length: 5-30µm	powder
Pristine >90%, pure	KBK	NRCWE-052	OD: 1-2nm; length: 5-30µm	powder
Functionalized -OH, 3.96wt%, pure:>90%	KBK	NRCWE-053	OD: 1-2nm; length; 5-30µm	powder
Functionalized -COOH.2.73wt%, pure:>90%	KBK	NRCWE-054	OD: 1-2nm; length; 5-30µm	powder
Pristine >90%, pure: short	KBK	NRCWE-055	OD: 1-2nm; length; 1-3µm	powder
Functionalized -OH, 3.96wt%, pure:>90%, short	KBK	NRCWE-056	OD: 1-2nm: length: 1-3um	powder
Functionalized -COOH.2.73wt%, pure:>90%, short	KBK	NRCWE-057	OD: 1-2nm: length: 1-3um	powder
Graphene Oxide (4mg/mL, water dispension 250 ml) GO-4-250	UBV	NRCWE-058	4mg/mL	Liquid
reduced Graphene Oxide GO-4-250	UBV	NRCWE-059	50-100 micr	powder
reduced Graphene Oxide GO-4-250	UBV	NRCWE-060	125-500 micr	powder
Functionalized -NH2, 0.45wt%, purity:>95%	KBK	NRCWE-061	OD: 8-15nm; length: >50µm	powder
Pristine purity: >95 %, ultrapure	KBK	NRCWE-062	OD: <8nm; length; 10-30µm	powder
Functionalized -OH, 5.58wt%, pure:>95%	KBK	NRCWE-063	OD: <8nm; length; 10-30µm	powder
Functionalized -COOH, 3.86wt%, pure:>95%	KBK	NRCWE-064	OD: <8nm; length; 10-30µm	powder
Anatase		NM-100	Ok	m?lk (hvid)
Anatase		NM-101	Ok	M?lk(hvid)
Anatase		NM-102		M?lk(hvid)
hydrophobic rutile		NM-103		Sediments
TiO2	HWA	NRCWE-001		powder
TiO2, Rutile NaBond 80 nm (ENPRA)	HWA	NRCWE-004	80 nm	powder
Silica		NM-200		Transparent
Silica		NM-203		Transparent
MWCNT		NM-400		
MWCNT		NM-401		
difficult to disperse - SWCNT		NM-410		
difficult to disperse - SWCNT		NM-411		
TiO2 anatase BET specific surface area 152 m ² /g		anatase	length ≈ 200-500 nm, diameter ≈ 8 nm	powder

NanoReg²

S BIOVIA

Real materials...

S BIOVIA

Building molecular models

NM-411

NRCWE-047

NRCWE-058

									Model Size	Model Final
NPs				Exp. Diameter (nm)	Model size	Model Radius (nm)	Surface Chemistry		Eq.	Radius (nm)
	L181-3	TiO2	Kemira Pigments	20	10	1.5	APS	Sphere	0-10	1
	NM-110	ZnO	JRC	158	80	3	None	Sphere	11-20	1.5
	NM-111	ZnO	JRC	152	80	3* - 2	TriEthoxy CaprylylSilane	Sphere	21-30	2
	NRCWE-001	TiO2	NanoAmor	10	10	1	None	Sphere	31-40	2.5
	NRCWE-002	TiO2	NanoAmor	10	10	1	APTES (I, IV)	Sphere	41+	3
	NRCWE-018	Fe2O3	NanoAmor	40	20	2.5	None	Sphere		
	NRCWE-019	Fe2O3	NanoAmor	95	50	3	None	Cylinder		
	NRCWE-020	NiZnFe4O8	NanoAmor	20	10	1.5	None	Sphere		
	NRCWE-021	ZnFe2O4	NanoAmor	22.5	10	2	None	Sphere		
	NRCWE-022	NiFe2O4	NanoAmor	25	10	2	None	Sphere		
	NRCWE-025	TiO2	NaBond Tech.	38	20	2.5	None	Sphere		
	NRCWE-030	TiO2	NanoAmor	12	10	1.5	None	Sphere		
	PU-nTox-03	TiO2	Janez	10	10	1	None	Cylinder		
	PU-nTox-21	TiO2	Janez	20	10	1.5	None	Cube		

APTES

S BIOVIA

S DASSAULT

12

TOXICITY DATA – Part I:

										Y	,								
	В	c	D	F	F	G	н	1.1	I	ĸ	1	м	N	0	р	0	R	s	Т
1	NM ID CODE	Route	Dispersant	ose (μg/anim	a Sacrifice d	ay # Total BAL CELL	BAL CELLSDead S (not counted for total)	cro BALL CE	mpho BAL CELI	Neutro BAL CELLS	Eosino BAL CELLS	hel BAL CELLS		TL BAL COMET	%T-DNA BAL COMET	TL lung COMET	%T-DNA lung COMET	TL liver COMET	%T-DNA live
2	L181-3	Instillation	BALF	18	1	66866.66667		54496.3	2006	1671.666667	0	8692.7		25.4	9.4	16.22	9.6	12.56	3
3	L181-3	Instillation	BALF	18	1	85000		71825	0	7225	0	5950		18.1	4.57	19.63	10	17.02	3.8
4	L181-3	Instillation	BALF	18	1	64600		58786	646	969	323	3876		17	4.96	19.86	10.1	12.79	3
5	L181-3	Instillation	BALF	18	1	71400		53907	357	7140	1428	8568		27.4	8.55	21.75	10.2	19.29	7.3
6	L181-3	Instillation	BALF	18	1	117866.6667		94882.7	3536	10018.66667	0	9429.3		32.8	8.23	12.61	6.6	14.22	3.4
7	L181-3	Instillation	BALF	18	1	60066.66667		50756.3	600.666667	2102.333333	0	6607.3		26.9	9.68	18.04	9.1	13.11	3.5
8	L181-3	Instillation	BALF	54	1	94066.66667		41859.7	1881.33333	40448.66667	470.3333333	9406.7		21.5	4.87	18.51	8.6	21.53	8
9	L181-3	Instillation	BALF	54	1	164333.3333		71485	821.666667	80523.33333	821.6666667	10682		23.3	7.91	19.28	10.8	11.27	2.3
10	L181-3	Instillation	BALF	54	1	151866.6667		75933.3	759.333333	68340	0	6834		29.8	7.16	23.09	13.6	29.05	12.
11	L181-3	Instillation	BALF	54	1	83866.66667		42772	0	32708	4612.666667	3774		22.6	6.12	17.95	8	14.42	3./
12	L181-3	Instillation	BALF	54	1	124666.6667		53606.7	1870	62333.33333	0	6856.7		23.1	4.66	22.58	11.3	13.64	3.8
13	L181-3	Instillation	BALF	54	1	11/866.6667		53040	589.333333	56576	1768	5893.3		19.5	6.16	13.74	7.5	14.35	3.3
14	L181-3	Instillation	BALF	162	1	346800		38148	3468	293046	0	12138		20.6	4.58	22.88	15.5	19.4	5.0
15	L181-3	Instillation	DALF	162	1	215333.3333		39836.7	10/6.66667	15/193.3333	10/6.66666	16150		10.4	5.01	21.22	11.5	10.15	4.2
10	L181-3	Instillation	BALF	162	1	228933.3333		50365.3	5723.33333	164832	3434	45/8./		27.5	8./1	18.83	9.3	14.97	3.3
17	L181-3	Instillation	BALF	162	1	159800		49538	0	1014/3	1598	/191		25.2	7.16	19.08	9	19.49	0.5
18	L181-3	Institution	DALF	162	1	333200		56644	0	258230	3332	14994		25.9	7.08	17.25	0.7	17.57	4.4
19	L181-3	Institution	DALF	162	1	194933.3333		13645.3	3898.66667	164/18.666/	2924	9746.7		32.4	9.45	21.00	0.0	10.97	4.2
20	L181-5	Institution	DALF	18	3	51000		44370	510	510	255	5355		29.2	10	19.0	0.1	15.75	3.5
21	L181-3	Institution	DALF	18	3	104266.6667		95404	0	521.33333333	1042.666667	7298.7		20.9	12.4	10.00	9	25.05	9.9
22	1181-5	Instillation	BALE	10	2	49800.00007		36397.3	997.5555555	5241.5555555	1490	5/54./		20.0	12.2	15.41	5	14.91	4.0
25	1101.2	Institution	DALF	18	3	55200.00007		408/4./	200.5555555	552.0000007	0	5595		27.7	12.0	10.2	0.0	14.01	
24	1101-5	Institution	BALE	10	 	75033 33333		5/1/1	1005	334.33333333	0	3024		37.7	11.4	19.2	9.5	20.80	2.0
25	1101-3	Instillation	BALE	10	2	102000		84150	E10	0180	1020	7393.5		20.1	13.5	19.39	9.2	12.82	3.6
20	1101-3	Instillation	DALE	54	3	102000		40020.7	310	5180	1170 00007	2652		27	17.0	21.01	11.0	10.02	
27	1191-3	Instillation	BALE	54	3	61200		40050.7 51714	0	0100	206	2032		44	25.4	21.91	12.0	17.47	49
20	1181-3	Instillation	BALF	54	3	82733 33222		61636.2	1654 66657	9928	2068 333322	7446		44	23.4	22.88	10.3	16.08	2.9
20	1181-3	Instillation	BALE	54	3	A5333 33333		34453.2	680	3525 555557	2008.333335	6573.3		20.5	4 91	22.00	9.9	14.55	3.0
31	1181-3	Instillation	BALF	54	3	40466 66667		63568.7	804 666657	4425 666667	804 6666657	10863		43.6	19.7	17 59	81	16.75	2.2
32	1181-3	Instillation	BALE	162	3	213066 6667		100720	3196	76704	10653 33333	12784		39	15.8	19.78	10	20.02	97
32	1181-3	Instillation	BALF	162	3	205133 3333		102567	0	91284 33333	1025 666667	10257		23.2	11.2	16.75	61	14.67	4
34	1181-3	Instillation	BALF	162	3	205155.5555		56723 3	10313 3332	87663 33333	41253 33333	10313		31.1	14.6	15.15	5.3	15.58	4
35	1181-3	Instillation	BALF	162	3	201733 3333		69598	10086 6667	113979 3333	3026	5043.3		36.9	16.2	21.09	10.3	14.6	20
36	1181-3	Instillation	BALF	162	3	128066 6667		76840	1921	42262	0	7043.7		40.3	15.2	19.89	10.9	13.56	2.2
37	1181-3	Instillation	BALF	162	3	157533 3333		89794	2363	56712	2363	6301.3		29.5	12	19.31	7.8	14.4	2.2
38	1181-3	Instillation	BALF	102	28	96333 33333		78030	3853 33333	2408 333333	2890	9151.7		42.8	16.1	19.7	12.3	14.61	3 1
39	1181-3	Instillation	BALF	18	28	62333 33333		57035	1870	935	0	2493.3		27.2	7.14	19.49	9.5	17.34	5.6
40	1181-3	Instillation	BALE	18	28	107666 6667		96900	1076 66667	1076 666667	0	8613.3		26.6	6.82	17 42	85	12.14	2.8

After Curation -> 2174 Data point

HelmholtzZentrum münchen German Research Center for Environmental Health

Neutro BAL CELLS_Mean

Mean 'Tox' values of each NMs

TOXICITY DATA II - Inflammation

A		С	D	E	F.	G	н	1		К	L	м	5
NAME	inflammation	Organi	ENM type	Subtype	Modification	Shape	R1-length	R2-diameter	Aspect ratio	Mean curvature	Physical surface area	BET Surface area	ROS Surface
L181-3	0.141	1	0 TiO2	Rutile	SiAlZrPolyalcohol	Spherical	38.4	20.6	1.86	0.0971	1333.166258	107.7	8
NM-400	0.062		1 CNT	MWCNT	Pristine	Tube	847	11	77.00	0.0909	29460.28511	254	9
NM-401	1,744		1 CNT	MWCNT	Pristine	Tube	4048	67	60.42	0.0149	859101.4978	18	3
NM-402	0.313		1 CNT	MWCNT	Pristine	Tube	1372	11	124.73	0.0909	47602.98268	226	1
NM-403	0.528		1 CNT	MWCNT	Pristine	Tube	443	12	36.92	0.0833	16926.90122	135	з
NM-411	0.037		1 CNT	SWCNT	Pristine	Tube	1000	2	500.00	0.5000	6289.468492	861	4
NRCWE-001	0.165	ð (3	D TiO2	Rutile	Pristine	Spherical	10	10	1.00	0.2000	314.1592654	99	2
NRCWE-002	0.26	- i	0 TiO2	Rutile	Positive	Spherical	10	10	1.00	0.2000	314.1592654	84.3	4
NRCWE-006	1.676		1 CNT	MWCNT	Pristine	Tube	573	74	7.74	0.0135	141811.4924	26	1
NRCWE-025	0.345		0 TiO2	Rutile	Pristine	Spherical	26	26	1,00	0.0769	2123.716634	28.2	3
NRCWE-026	0.233		1 CNT	MWCNT	Pristine	Tube	846	11	76.91	0.0909	29425.72759	254	4
NRCWE-030	0.154	1	D TIO2	Rutile	Pristine	Spherical	12.1	12.1	1.00	0.1653	459.9605804	139.1	
NRCWE-040	0.177		1 CNT	MWCNT	Pristine	Tube	519	22	23.48	0.0455	36800.94621	150	8
NRCWE-041	0.1		1 CNT	MWCNT	DH	Tube	1005	27	37.36	0.0370	86068.03052	152	1
NRCWE-042	0.226		1 CNT	MWCNT	COOH	Tube	723	30	23.94	0.0333	70028.04804	141	1
NRCWE-043	0.25		1 CNT	MWCNT	Pristine	Tube	771	27	28.84	0.0370	65866.87175	82	8
NRCWE-044	0.182		1 CNT	MWCNT	OH	Tube	1330	33	40.67	0.0303	138310.6429	74	9
NRCWE-045	0.157		1 CNT	MWCNT	COOH	Tube	1553	30	51.42	0.0333	148775.2095	119	1
NRCWE-046	0.252		1 CNT	MWCNT	Pristine	Tube	717	29	24.64	0.0345	66878.55428	223	2
NRCWE-047	0.308		1 CNT	MWCNT	OH	Tube	533	23	23.58	0.0435	38645.29672	216	2
NRCWE-048	0.229		1 CNT	MWCNT	COOH	Tube	1604	18	89.61	0.0556	90703.45048	185	8
NRCWE-049	0.315		1 CNT	MWCNT	NH2	Tube	731	15	49.06	0.0667	34566.64552	199	1
NRCWE-051	0.254		1 CNT	SWCNT	Pristine	Tube	17500	21	829.38	0.0476	1160732.422	442.6	1
NRCWE-052	0.101		1 CNT	SWCNT	Pristine	Tube	17500	19	925.93	0.0526	1039642.874	405.7	1
NRCWE-053	0.069		1 CNT	5WCNT	OH	Tube	17500	24	729.17	0.0417	1320373.693	367.8	3
NRCWE-054	0.126		1 CNT	5WCNT	COOH	Tube	17500	17	1005.75	0.0588	957090.5373	370.8	1
NRCWE-055	0.067		1 CNT	SWCNT	Pristine	Tube	2000	14	145.99	0.0714	86374.46147	453.1	5
NRCWE-056	0.058		1 CNT	5WCNT	OH	Tube	2000	13	156.25	0.0769	80682.1312	373.4	4
NRCWE-057	0.09		1 CNT	SWCNT	COOH	Tube	2000	7	298.51	0.1429	42167.85461	281.6	7
NRCWE-061	0.303		1 CNT	MWCNT	NH2	Tube	731	16.42196296	44.51	0.0609	38136.72112	170.4	1
NRCWE-062	0.099		1 CNT	MWCNT	Pristine	Tube	468	8.818419643	53.07	0.1134	13087.56918	443.2	2
NRCWE-063	0.041		1 CNT	MWCNT	OH_more	Tube	345	14.17828767	24.33	0.0705	15682.89703	426.4	1
NRCWE-064	0.053		1 CNT	MWCNT	COOH_more	Tube	214	7.464317757	28,67	0.1340	5105.785558	445.2	5
PU-nTox-03	0.345	8 - N	0 TiO2	anatase	Pristine	Tube	350	10	35.00	0.1000	11152.65392	152	6

Inflammation efficacy in units cm²/g for the lung

Using Log (Inflammation) as Y

Y

Experimental – Characterisation

▷ Shape

▷...

- Computed by Simulation (WP4)
 - ▷ Redox Potentials
 - ▷ Adsorption Energies on
 - $\vartriangleright \text{Band Gap}$
 - ▷...

BIOVIA

- Common descriptors (standard?)
 Log P
- ► Descriptors derived from Exp. Protocols

NMs DESCRIPTORS – Classes and Types

Challenge = NMs are 'substances' not 'small molecules' (typically used in QSAR studies)

17

Dase

Descriptors (Independent Variables)

Two subsets of NMs

- ▷ Subset I: 44 NMs used in the TOX dataset (NRCWE)
- ▷ Subset II: 35 NMs used in the Inflammation dataset (UCD)
- Experimental Descriptors for the NMs used are the same for both datasets
- Computed Descriptors
 - ⊳ For Subset II add computed Adsorption energies on proteins, AAs and Lipids (DPPC)

Descriptors – Experimental (NanoReg 2 DB)

- Physico-chemical properties (before/after)
- Well defined characterization techniques are still a challenge

- Size and shape
- Size distribution
- Agglomeration state
- Porosity
- Structure-dependent elect.
- Electronic properties
- Characterisation:
 In what medium?

BIOVIA

- ✓ Surface area
- ✓ Surface chemistry
- ✓ Surface charge
- ✓ Crystal structure
- Composition
- Configuration
- Coating
- Aggregation state
- Metal content

Recent advances, and unresolved issues, in the application of computational modelling to the prediction of the biological effects of nanomaterials[‡]

David A. Winkler

Invited review

(Q)SAR modelling of nanomaterial toxicity: A critical review

CrossMari

OnesMed

Ceyda Oksel^a, Cai Y. Ma^a, Jing J. Liu^{a,b}, Terry Wilkins^a, Xue Z. Wang^{a,b,*} *Institute of Partick Science and Engineering. School of Chemical and Process Engineering University of Leeds, Leeds 152 9ff, UK *Solos of Chemical Engineering. School Chemical and Process Engineering University of Leeds, Leeds 152 9ff, UK

> Chapter 5 Literature Review of (Q)SAR Modelling of Nanomaterial Toxicity

Ceyda Oksel, Cai Y. Ma, Jing J. Liu, Terry Wilkins, and Xue Z. Wang

The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: the role of surface area

Claire Monteiller, Lang Tran, William MacNee, Steve Faux, Alan Jones, Brian Miller, and Ken Donaldson

19 2

Descriptors – Experimental - continued

Experimental Protocols:

- DOSAGE, Environment, Spectral information (NMR, UV,...)
- Sacrifice day, Route, Dispersant, etc.

Food and Chemical Toxicology Volume 112, February 2018, Pages 478-494

Perspectives from the NanoSafety Modelling Cluster on the validation criteria for (Q)SAR models used in nanotechnology

Tomasz Puzyn ^a, ^g, ¹¹²⁸, Nina Jeliazkova ^b, Haralambos Sarimveis ^e, Richard L. Marchese Robinson ^d, ¹, ², Vladimir Lobaskin ^e, Robert Rallo ^f, Andrea-N. Richarz ^d, Agnieszka Gajewicz ^a, Manthos G. Papadopulos ^g, Janna Hastings ^h, ³, Mark T.D. Cronin ^d, Emilio Benfenati ⁱ, Alberto Fernández ^j

E Show more

BIOVIA

Descriptors (2) – Computed See WP4

- ► Simulations:
 - ⊳ Hydration energies
 - ⊳ Bio-nano binding free energies (Eads)
- ► Others:
 - ⊳ Surface area
 - ⊳ Volume, Shape, Surface area...
 - > Dipole Moment
 - ⊳ Atom Count

Use of Metal Oxide Nanoparticle Band Gap to Develop a Predictive Paradigm for Oxidative Stress and Acute Pulmonary Inflammation

Haiyuan Zhang^{1,*}, Zhaoxia Ji^{1,*}, Tian Xia², Huan Meng², Cecile Low-Kam³, Rong Liu⁴, Suman Pokhrel⁵, Sijie Lin¹, Xiang Wang¹, Yu-Pei Liao², Meiying Wang², Linjiang Li¹, Robert Rallo⁶, Robert Damoiseaux^{1,7}, Donatello Telesca³, Lutz Mädler⁵, Yoram Cohen⁴, Jeffrey I. Zink⁸, and Andre E. Nel^{1,2,§}

¹California NanoSystems Institute, University of California, Los Angeles, California

<text>

Urther's and Printplan in Medicinal Chemistr

Roberto Todeschiri, Viviana Conscinni

*WILEY-VCH

Molecular Descriptors for Chemoinformatics

BIOVIA Materials Studio

Solve key materials and chemical research problems with an integrated, multi-scale modeling environment that delivers a complete range of simulation methods.

11日本本部121日・4	-		1,00,02,42		· (1) · (三) · (1) ·		0 0 1 2	12 10 10 10	0.00						
rx=las-lo		wat	THE	Hendessure	Baden - pros - Cal	Broard Card	Testerear Posts	Tos charge	Total formal starting	Total reit name	Montale and follower	Kotesaler volume (vdW	Wattank Libraria	Principal mercantia all	Processi roome
30 Ataenitic Forche Geore Out	1.4	1.491.3	100	Ceres Agrees	CARL COLOR	APP 1101-1	-3 to siQa-605	34847108-011	10.000000	* 1210/04-054	I TODALASSIN	1701004-001	2.3666.000	12101010-000	1.0070349-010
Cattor Buck		NH.HT -	2+0	110	and set in:	200 RAL 192	1.0002384-000	420201-1-010		1.0175284-020	9.687120e+674	-	-		1.010.00+-50
C Overdette		105.01	D+0	180	and second	103 MIL-107	-1 20110-10-002	-	TH OLODOD	12000000	A ACCOMPANIES	41/10/10/04	1.0007076	THEFT	2178385+4
Fe20)	-	10.400	INCONT.	(RD	(B) 308+00.	A 100-01	4.5483081-004	0 00000000	0.00000000	1221104-004	8.0000004-811		1.40302003	110-0014-000	E 408424-0
DI INCOLAPIETE	-	10.471	ANCRI.	185	TO MART	10	1.100.000-000	-	AP NAMES	A ST DET BA-SER	1 announcember 1211	1 SIZIMANE	1 240/2014	2 Bullhardon	-
N2HPGCK - NECVE-22	1.0	-	aner .	195	The set and				-	1 2010 104-014		-	1 al Desido	2 10-000-000	I MARCHAN
C QLAK	- 4	10.000	interest.	-	- AND	- M						a de la composition de la comp		1.100.0	
IT CO OLD	۴.		ADVENT	-		型	1 Canada and			-		-	1 million Tax	1110000000000	-
(1) Cantart Function Examply			-	1.000	*	聖	-								
HI TEN CEL HEAT	. 8	49CV6-481	1602	Factories	and successions	H MCNE P	0.3909438-029	341-209-010	42.00000000	Configura-spe	2.001/128-003	1.11100-000	1.2049-04	5.479004a-000	1.1381.145-
Tavid State Media at	116	micke-set	162	Selocat	离 move-on	图 success	4 2591788-004	111112040-000	S4 04000000	1.66121044004	L'SCHLIMES	1 TON INVESTIGE	1 ATRENTT	1 married and	e son lites
Samuel, 459444, Miacolf PR.m.	1.66	AROVE-IN	WADAL	#100034114	B KROWEANN	B MENCH	1 2 201704000	0 20000011	ND4 68088080	131-010-000	2.0-0400++811	1 3127584-000	1.00171014	T23-070+-010	13740864-
Cartty unintern	10	INCAST IS	Ne201	Manademize	ARCHINGER	B sacistan	8 -4 1021100-020	3 100836-000	AE 25000000	2 381 7254-425	A /Destra-ibe	1.8094216-028	T 61 Decime	5.5000516-GU	Pratition-
11D Bechast	1.12	MICON IN T	Figer	banalony.	M NOVEON	· merce at	a	2010/06/04	2 = 8000080	- 811099-104	() AMERICAN DIT	1.01005-014	I HAMATAS	1.388404-007	3 HABBBA
2994204 - MRCWE-0	1.14	WOVE-CH	REINHOL	Weinfeld	NELOVE-GOD	B 94574-65	 -1.010150e-605 	4111 (140-011	28 0000000	+ 2017 104-004	1.1011224-004	12012210-004	1.0799411	Firthise-on	4 25414000
2+0	14	1980348-821	Defealed	Manadaline	AND MEDINE	· mereal	4.0000000-020	110106-000		1 11 11 104-015	2400004-014	2 842764-014	1.79479412	110004-017	1.7878484
-	14	WOVE 402	107+204	Massheter	NROAL OLD	IN AREAGIN	2	24007114-010	10.0000005	1.0031124-005	20-5+41+-101	0.0034788-014	3 STUDIO	1171024+087	1.711035-
• I 3		100308-020	1630	Subout Terry	an work on	and second	9 -1.M22994-006	-	210 04000000	10111384-003	-	6 111 28-0-024		1 100100-001	-
	1.0	100.00.00	PROFE	180	201 KROVE 000	AND ADDRESS	1.010100-004	-	0.0000000	120100-004		A Matrix-ain	1 4034031	218-000-000	
	1.14	1001012	102	herener	NO BRONE-COD	BO ANCHE-DI	-0.0091194-400		Un recorded	100101-004	1.0012128-00-	1311104-014	1/10/110-	110100-000	2.3/47234-4
		MICOL MI	HINDRY	Creat Tubes	and simplicato	A LECTE DE	-	-			8.073012++021	1733834-034	1.1110000	3 (1) Herton	1.10770444
	-	WOVE 441	RADIT	Distan Tutora	35 HID/C-041	SD MONTH		2217228-010	-17 31000000	a 10(34berdis	21021234-014	a biel murder	-	1 MORES-GET	1.1110404-
	- 41	WACKER HIL	of NACEST	Chess Tubes	THE PROVIDE	AN DECOMO	1. 1. 80 1014-004		-	1.73/03/4-634	1.0221414100	1.000010-010	1.00709407	8 118483+-200	2.00.000+4
	-	weight all	INADIT	Dates Takes	ST HIS/MEDIA	ST RECORD	1.000001-000	-		-	2	2 7087794-004	1.0000000	110010-001	
	- 23		motor.	Chess Times	A SWOOT OF	Starter and	1 Partie and	-	-	é moltania	1		T designed a	a unmanner	C Delib last
	19		-	A	B	1911		1		1. 341		-			
		SHIT!					10 000 pre-	Contraction of the second		1.	1.000		e acomito	1990.000.000	inter the

BIOVIA Pipeline Pilot

Data Science Tools for Scientists

Using RP Forest model Y = Neutro BALL Cell (%, Log)

[Learn RP Forest Model – Split Method = Gini – Max. tree depth 100 – Cross-Validation = Random]

Tox Dataset 1 QSAR model - Details

Summary 🛎 Plots 🛎 Importance 🛎

			Summary	Statistics			
R-squared (training)	RMS Error (training)	Iteration	Q-squared (test)	RMS Error (test)	RMS Error (null model)	Overall Q-squared (test)	Overall RMS Error (test)
0.85071	0.35871	1 2 3	0.79663 0.80036 0.80013	0.41592 0.41209 0.41245	0.91993 0.91950 0.91937	0.79904	0.41349

on | 6/19/2020 | ref.: 3DS_Document_2019

/ariable	Variable	Variable	Variable	Variable		
Name	Importance (RMS Prediction Change)	Importance (RMSE Change)	Importance (R2 Change)	<u>Correlation</u> with Response		
Sacrifice day	0.6713	0.386	0.47621	-0.22767		
Dose (µg/animal)	0.5196	0.2787	0.33694	0.28246		
TYPE	0.284	0.09245	0.09216	NA		
C_Count	0.1748	0.03929	0.03094	0.07407		
Dispersant	0.1692	0.03425	0.03136	NA		
Shadow area fraction: ZX plane (Spatial Descriptors)	0.09329	0.01023	0.00592	0.26041		
Route	0.0881	0.009703	0.00825	NA		
Shadow area fraction: XY plane (Spatial Descriptors)	0.08716	0.01068	0.00596	0.27274		
BET	0.08565	0.009199	0.00614	0.02512		
Manufacturer	0.07306	0.006721	0.00483	NA		
Exp. Diameter (nm)	0.06891	0.006468	0.00427	-0.17562		
Ti_Count	0.066	0.007099	0.00600	0.00293		
H_Count	0.05801	0.00474	0.00125	0.06471		
Fe_Count	0.05483	0.004287	0.00284	-0.26133		
O_Count	0.05212	0.00478	0.00280	-0.24779		
Shadow ratio (Spatial Descriptors)	0.04909	0.00216	-0.00011	-0.05619		
Exp. Length (nm)	0.04846	0.003424	0.00104	-0.02849		
Shadow length: LX (Spatial Descriptors)	0.03993	0.002094	0.00067	-0.06569		
Dipole moment Y (Spatial Descriptors)	0.03865	0.001658	0.00080	-0.01214		
Radius of gyration (Spatial Descriptors)	0.03862	0.001063	-0.00019	-0.05921		
Shadow area fraction: YZ plane (Spatial Descriptors)	0.03674	0.00282	0.00181	-0.00136		
Shadow	0.03646	0.001896	0.00072	-0.03070		

Tox Dataset 1 QSAR model 2 –adding Eads Descriptors

			Summary	Statistics	1		
R-squared (training)	RMS Error (training)	Iteration	Q-squared (test)	RMS Error (test)	RMS Error (null model)	Overall Q-squared (test)	Overall RMS Error (test)
0.84274	0.34799	1 2 3	0.79155 0.78904 0.79048	0.39737 0.39984 0.39825	0.86846 0.86773 0.86783	0.79035	0.39849

	Importance	- Iteration 3	(test)			
<u>Variable Name</u>	<u>Variable</u> Importance (RMS Prediction Change)	<u>Variable</u> Importance (RMSE Change)	<u>Variable</u> Importance (R2 Change)	Variable Correlation with Response		
Sacrifice day	0.7143	0.4371	0.56295	-0.31994		
Dose (µg/animal)	0.522	0.2848	0.36485	0.29108		
Dispersant	0.1765	0.04215	0.04490	NA		
Route	0.09067	0.01138	0.01070	NA		
BET	0.08464	0.007371	0.00648	-0.14162		
Eads(SER)	0.04556	0.00385	0.00177	-0.26558		
Eads(DPPC)	0.04481	0.00261	0.00087	-0.19775		
Eads(1YCK)	0.0428	0.003508	0.00162	-0.21929		
Eads(5WY9)	0.04242	0.003154	0.00143	-0.21908		
Eads(5NRF)	0.04228	0.00325	0.00165	-0.23806		
Eads(LEU)	0.04098	0.002922	0.00094	-0.25771		
Eads(6ENP)	0.0401	0.00345	0.00178	-0.22640		
Eads(CYS)	0.03918	0.002022	0.00024	-0.27420		
Eads(1NDX)	0.03688	0.002403	0.00097	-0.22541		
Eads(4XAT)	0.03608	0.001857	0.00017	-0.21033		
Eads(4GLP)	0.03495	0.00181	0.00017	-0.20396		
Eads(2PKT)	0.03472	0.001489	-0.00025	-0.20304		
Eads(spd)	0.03339	0.001195	-0.00013	-0.18147		
Eads(4MTH)	0.03287	0.001307	-0.00019	-0.21758		
H_Count	0.03216	0.001487	0.00107	-0.00019		
Eads(THR)	0.03127	0.001303	-0.00023	-0.26404		
Eads(ASP)	0.03017	0.0007721	0.00029	0.12478		
Eads(5E13)	0.02952	0.0006674	-0.00069	-0.22747		
Eads(ETA)	0.02727	0.0002576	-0.00016	0.17940		
Eads(5LG8)	0.02647	0.0007715	-0.00005	-0.23246		
Manufacturer	0.02484	0.00162	0.00136	NA		

Variables Correlation Matrix

	~		-			L.	9						- m	1.1		. 5		1.12	2		· ·			~	1.10	-	~~	~0	AC	-mu	ML	MIC	MG.	MA	-	~	ma	ML	Am	
		E	1:	К:	L:	M :	N:	0:	P:	Q:	R:	S:	T:	Uî	V:	W	XC	Y:	Z :	AA:	AB:	AC :	AD :	AE :	AF:	AG	AH :	AI:	AJ:	AK:	AL:	AM:	AO:	AP:	AQ:	AR:	AS:	AT :	AU :	AV :
		R1-	R2-	d Asp	e Mea	u Phys	BET	ROS	Princ	c Prin	c Prin	c Prin	c Radi	Ellips	s Sha	c Shad	: Sha	c Sha	c Sha	c Shac	: Shad	Shac	Shac	: Sha	Con	r Com	SON	Solv	Dipol	Dipol	Dipol	Dipol	H_CI	C_C(N_C	0_0	Na_C	SI_C	TLO	Fe_C
			1050	ratio	CUL	/ surt	Sur	Surt	mon	n mon	n mon	n mon	10 0	VOIU	area	area	area	ares	area	area	leng	lengt	lengt	ratio	SULT	I SUIT	surt	SULT	mom	mom	mom	mom				1000		2.400		
0.1	RUS	8800	1050	4200	2700	8000	7910	1	3040	2900	2250	40/0	9830	1400	9610	2100	4430	5500	7700	3200	7960	8900	1700	0160	9540	5200	9140	5400	4230	1610	8900	2900	1100	9290	2298	4600	0	3400	1100	0
P:P	rincipal	9420	9170	8140	7400	8010	6550	3040	1	0700	8800	8800	2600	8700	8600	9620	7300	0100	0470	5200	7800	2220	1440	2700	5200	0300	5600	0500	5600	1100	3000	0500	0400	6200	5600	3020	0	7780	4980	0
Q:F	Principal	7030	8900	5800	0900	7740	3800	2900	0700	- 1	7670	5880	6340	6800	9000	5900	0200	8300	7000	5700	5330	2600	7000	5200	2600	2000	7900	5300	5180	6470	1560	4770	5300	8200	7240	-004	0	8710	2230	0
R:F	rincipal	6410	7640	5360	8750	6290	2750	2250	6800	7670	1	1	5300	3200	5200	5480	1700	9980	9340	9680	4200	5650	7710	4100	1000	9700	9600	8300	6600	2700	2700	4000	2700	5700	2400	7820	0	5880	9140	0
S:F	Principal	8640	0170	8280	9280	8220	7010	4070	8800	5880	1	1	3800	2700	4800	7790	1200	0640	2950	3140	2400	9630	1860	1200	1500	9600	9400	8300	7700	2000	1200	5800	2700	5300	2700	6800	0	5680	8440	0
T:F	adius of	0900	3175	7800	2800	9700	9100	9830	2600	6340	5300	3800	1	5300	7000	6250	6400	8830	6920	2140	6500	3240	7460	4900	9800	0200	9200	8100	1100	B100	2000	6700	2500	0300	1900	5170	0	8400	2700	0
U:E	llipsoidal	3000	0200	1600	8400	3930	8900	1400	8700	6800	3200	2700	5300	1	1900	9500	2400	3200	6900	5600	4500	7000	6300	5700	2500	0900	8100	9900	7800	5000	2100	3800	3500	0900	7200	6390	0	0560	7980	0
Vis	Shadow	3680	1500	5070	7500	9200	5420	9610	8600	9000	5200	4800	7000	1900	1	2300	5800	4700	3800	2600	7100	8900	5800	9200	4800	2900	6200	1700	3600	5800	9800	8100	0700	9500	2100	7159	0	0500	5330	0
W : :	Shadow	1600	8300	1700	1400	9910	2300	2100	9620	5900	5480	7790	8250	9500	2300	1	1900	8200	7900	2100	7900	1100	9100	0800	7900	5700	5300	8500	1440	2160	9605	1050	2700	2400	1370	5900	0	8050	8100	0
X:5	Shadow	5910	6800	0080	0100	2100	7930	4430	7300	0200	1700	1200	5400	2400	5800	1900	1	4100	3300	6700	8500	1000	2400	5700	0500	9200	3100	1300	7600	3700	2100	0900	9300	9000	8500	2640	0	1700	2490	0
Y : 5	Shadow	8500	4900	5400	3630	6200	0800	8500	0100	8300	9980	0640	8830	3200	4700	6200	4100	1	0000	8900	8490	0500	4350	4850	0800	2600	5600	2600	0360	8050	8820	2600	7300	5500	9900	9600	0	9500	6600	0
Z : 5	Shadow	2700	4100	4600	7700	6700	4600	7700	0470	7000	9340	2950	5920	6900	3800	7900	3300	0000	1	6260	5480	5400	6400	4000	3800	0900	5800	9400	2700	0320	1530	3500	5100	6900	6570	1100	0	9800	3200	0
AA:	Shadow	1100	4100	4200	9220	2700	0400	3200	5200	5700	9680	3140	2140	5600	2600	2100	5700	8900	6260	1	4710	0280	5200	5350	5600	5700	7800	8200	2330	0080	5290	5500	9700	0000	9900	2700	0	2900	1500	0
AB	Shadow	2700	6580	4500	8500	8300	8300	7960	7800	5330	4200	2400	8500	4500	7100	7900	8500	8490	6480	4710	1	8700	4600	2300	7100	3500	7700	4900	2800	7300	2100	6500	5000	2800	1300	3710	0	9500	4900	0
AC	Shadow	5000	3300	0200	9500	7960	8000	6900	2220	2600	5650	9630	3240	7000	5900	1100	1000	0500	5400	0280	5700	1	9200	9100	2900	5400	5800	7000	9450	1812	1050	0010	3200	8100	7186	9600	0	0000	4100	0
AD	Shadow	0400	2700	3400	9000	8530	2200	1700	1440	7000	7710	1860	7460	8300	5800	9100	2400	4350	8400	5200	4600	9200	1	4700	3300	8900	9600	8000	8900	1897	2780	2240	4400	8200	B450	7900	0	6800	5700	0
AF	Shadow	2000	5800	8500	3550	5700	3000	0160	2700	5200	4100	1200	4900	5700	9200	0800	8700	4850	4000	5350	2300	9100	4700	1	3800	9650	7800	2000	8700	5400	0500	1400	5400	4340	5000	7300	0	9000	7000	0
ΔF	Connolly	0000	5800	5250	B100	8000	3400	9540	5200	2600	1000	1500	9800	2500	4800	7900	0500	0800	3800	5600	7100	2900	3300	3800	1	8700	0100	5200	3200	2700	7000	0000	9900	7000	7300	4696	0	8000	8560	0
40	Connelly	5200	7300	7200	3300	8220	2600	5200	0300	2000	0700	0600	0200	1000	2000	2700	0200	2600	0000	5700	3500	8400	2000	DEED	8700		7000	4500	5600	D100	4120	2240	4500	4000	0436	3000	0	45.40	8490	0
AU	Cohistoliy	5290	0000	2470	0000	0220	2000	0140	5500	2000	0000	9000	0200	0200	2300	5200	3200	2000	0900	7000	3300	5400	0000	7000	0100	7000	1000	4300	0000	100	4130	0040	1300	5500	7200	0405		4040	7204	0
An	Solvent	0250	9900	9170	6000	3400	0000	3140	0000	1900	9000	9400	9200	5100	5200	5300	1100	2000	5600	1000	1000	2000	9000	7800	0100	7000		4400	0900	1000	0200	7010	2700	5500	1300	1165	0	1000	1201	U
AL	Solvent	0250	1100	1900	4000	3900	0000	5400	0500	5300	0300	5300	6100	9900	1700	0000	1300	2000	9400	0200	4900	7000	0000	2000	5200	4000	4400		7700	2900	15/0	7910	2900	4000	0000	1400	0	1200	0/40	0
AJ :	Dipole	1500	9800	5800	4600	5200	1200	4230	5600	5180	6600	7700	1100	7800	3600	1440	7600	0360	2700	2330	2800	9450	8900	8700	3200	5600	0900	7700	1	2200	8270	9100	4990	8950	0200	8900	0	5090	3300	0
AK:	Dipole	5340	4770	2310	4200	2530	3870	1610	1100	6470	2700	2000	8100	5000	5800	2160	3700	8050	0320	0800	7300	1812	1897	6400	2700	9100	4600	3900	2200	1	7800	2600	7100	5600	4300	1762	0	0160	2390	0
AL :	Dipole	8340	5690	9870	7700	2078	3380	8900	3000	1580	2700	1200	2000	2100	9800	9605	2100	8820	1530	5290	2100	1050	2780	0500	7000	4130	B200	1570	8270	7800	1	0200	0390	4180	9500	4560	0	1630	3560	0
AM	Dipole	9870	8790	8450	9940	6490	5290	2900	0500	4770	4000	5800	5700	3800	8100	1050	0900	2600	3500	5500	8500	0010	2240	1400	0000	8840	0600	7910	9100	2600	0200	1	2500	7700	2400	6200	0	9280	3600	0
an	H Count	0110	6200	1500	1800	4570	5000	1100	nann	5300	7700	2700	7500	3500	0700	7700	9300	7300	5100	9700	ROOO	1700	4400	5400	9900	4500	2700	2900	1990	7100	nern	25. nn	1	3000	5900	5000	n	7430	auuu	n

Highly correlated variables (>=0.7) are removed from the list

e.g. Spatial descriptors like Volume, Length, Moment Inertia or Atom counts (C&H, Ti&O) For the Eads (Dataset II) only used 1 variable for Protein Adsorption, 2 for small mol. Ads (AA and Lipids)

26

GFA Model on Tox II (Inflammation)

			~	
		Equation 1	Equation 2	Equat
	Friedman LOF	1.26712000	1.28411900	1.
	R-squared	0.73045200	0.72683600	0.
1	Adjusted R-squared	0.67269200	0.66830100	0.
	Cross validated R-squared	0.49424200	0.53861400	0.
	Significant Regression	Yes	Yes	Yes
	Significance-of-regression F-value	12.64626400	12.41707600	12.
	Critical SOR F-value (95%)	2.45854700	2.45854700	2.
1	Replicate points	0	0	
	Computed experimental error	0.00000000	0.00000000	0.
Ī	Lack-of-fit points	28	28	
1	Min expt. error for non-significant LOF (95%)	0.43483800	0.43774500	0.

Equation	Definitions		
Y = 0.000040113 * X1	X1 : E : R1-length		
+ 4.746605621 * X3	X3 : G : Mean curvature		
- 0.004685155 * X4	X4 : H : BET Surface area		
+ 0.000041291 * X11	X11 : O : C_Count		
+ 0.000717498 * X16	X16 : T : Ti Count		
- 0.027853961 * X21	X21 : Y : Eads(DPPC)		
- 2.430530061	and bit when the date there		

RP Forest Regression Model on Tox Dataset II (Inflammation)

Summary 🛎	Plots 🗷	Importance 🗷
-----------	---------	--------------

Summary Statistics							
R-squared (training)	RMS Error (training)	Iteration	Q-squared (test)	RMS Error (test)	RMS Error (null model)	Overall Q-squared (test)	Overall RMS Error (test)
0.91194	0.37856	1 2 3 4 5	0.32352 0.24827 0.31629 0.11774 0.13042	0.75984 0.79127 0.76659 0.86170 0.85272	0.97979 0.95651 0.93642 0.95838 0.91788	0.21756	0.80756

28	Zs	BIO	VIA

Importance - Iteration 5 (test)					
<u>Variable</u> <u>Name</u>	Variable Importance (RMS Prediction Change)	<u>Variable</u> Importance (RMSE Change)	<u>Variable</u> Importance (R2 Change)	<u>Variable</u> <u>Correlation</u> <u>with</u> <u>Response</u>	
BET Surface area	0.3289	0.1202	0.12873	-0.61660	
Eads(DPPC)	0.2261	0.007104	0.00938	-0.17482	
R1-length	0.08208	0.008013	0.01807	-0.09415	
Eads(TLR4)	0.07881	-0.003571	-0.00461	-0.26591	
R2-diameter	0.07203	0.0006697	0.00546	0.64120	
Eads(CYM)	0.06749	0.001253	0.00075	0.23376	
ROS Surface	0.05662	-0.02305	-0.04676	0.13845	
H_Count	0.04899	-0.006933	-0.01157	0.55668	
C_Count	0.04852	-0.001183	0.00005	0.55521	
Subtype	0.04425	0.0008853	0.00101	NA	
O_Count	0.04188	0.006697	0.01231	0.15266	
Eads(ASP)	0.03727	-0.004945	-0.01022	0.32674	
Eads(1AX8)	0.03631	-0.001947	-0.00555	-0.05016	
Mean curvature	0.03037	0.003655	0.00806	-0.32510	
Eads(CHL)	0.03007	-0.001938	-0.00308	0.20346	
Dipole moment Y	0.0238	0.003027	0.00560	-0.03599	
Dipole moment	0.02011	0.0008146	0.00158	0.09336	
Dipole moment X	0.01747	-0.0001216	-0.00083	-0.11422	

Conclusion

- ► From Dataset I
 - > Experimental setup (dosage, sacrifice day) are key
 - ► To compare different NMs the exp. procedures must be identical
 - Length of carbonaceous materials (as is the "Atom Count C") is highly positively correlated to the Neutro Ball cell count
 - ► Long CNTs (NRCWE 45-50) are like 'asbestos' particles
- ► From Dataset II
 - ▷ BET highly correlated (negatively)
 - ⊳ Length and Diameter (Curvature)
 - ⊳ Eads DPPC

