

The Role of Tissue-Delivered Dose and Dose Metric for Hazard Grouping and Risk Assessment of Nanomaterials (NMs)

Otmar Schmid

Comprehensive Pneumology Center, Munich, Germany Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg/Munich, Germany

SmartNanoTox Project Online Conference, 24 June 2020

From exposure to inhaled NMs to health effects

Tissue-delivered dose

In vivo – Pulmonary Exposure Technologies and Models

Mouse (C57BL/6)

Intratracheal Instillation

Bulk liquid

Mouse (C57BL/6)

Ventilator-assisted Inhalation

Liquid <u>aerosol</u>

Rat (Wistar)

Nose-only **Inhalation**

Liquid/dry aerosol

Dose rate/delivery period Substance efficiency Degree of physol. Relevance Dosimetry method

High / ~ sec High / ca. 80% Low 80% - applied dose

Medium / ~ min Medium/ ca. 5% Medium

5% - applied dose (account for retainment of NM in nebulizer)

Low / ~ hours to months low / <0.1% High

- From inhaled conc. & lung deposition model
- ICP-MS, themogravimetry in lung homgenates

HelmnoltzZentrum munchen
German Research Center for Environmental Health

3D Co-Mapping of Morphology and Aerosol Deposition in Murine Lung

3D Light sheet fluorescence microscopy after optical clearing of tissue

Mouse lung after application of fluorescent nanoparticles

Green – autofluorecence of lung tissue Red - Fluorescent melamine 600 nm particles

3D Co-Mapping of Morphology and Aerosol Deposition in Murine Lung

Ventilator-assisted aerosol inhalation

Green – autofluorecence of lung tissue
Red - Fluorescent melamine 600 nm particles
(delivered as suspension in 3 μm droplets)

Yang, ..., Stoeger, Schmid, ACS Nano, 51, 4, 526-535, 2019

Aerosol Deposition in Human Lung

⇒ Only a fraction of the inhaled dose reaches the cells

0.01

ı münchen

In vitro models: Cells, exposure types, assays

Pulmonary cell types/assays

Mouse: LA4 - epithel cells

MHS - macrophages

co-culture: LA4 + MHS

Rat: N8383 - macrophages

Endpoints (24h)

Viability (WST-1)

Cell free Oxidative Potency of NMs

• DCFH assay: Reactive oxygen species (ROS)

Submerged cell culture

ALI-insert

perforated

co-culture: LA4 + MHS (with whole surfactant

In vitro particokinetics affects cellular dose

Media "dose" is different than dose to the cell

Shape, size, and density affect

- delivered dose
- delivery rate

Delivery rate/dose impacts timing/magnitude of response

Delivered dose fraction in submered cell cultures systems

ISDD particokinetics model

(Hinderliter et al., Part Fibre Tox., 7:36, 2010)

Typical cell culture conditions:

- Medium height ~ 5 mm
- Incubation time 24h

Typical NM parameters:

DLS volume diameter: 100 - 600 nmAgglomerate density: $1.05 - 2 \text{ g/cm}^3$

Typical cell-delivered dose fraction: <5 – 100%

⇒ Only a fraction of the nominal dose reaches the cells

Dose Metric

Cell free ROS assay (DCFH) for 13 different fiber-like NMs (12 MWCNTs & asbestos)

Surface area

⇒ Surface area is more predictive of ROS than mass

Acute lung inflammation in mice – Instillation of NMs

Number of neutrophils/total cell count in Bronchoalveolar lavage (BAL) 1d after instillation

- ⇒ Surface area: Allows identification of Hazard Classes
- ⇒ Hazard factors (relative to NMs w/o spec. tox): 5 10-fold

Sustained inflammation in mice – 28d

⇒ Similar hazard classes as for acute inflammation (1d)

tzZentrum münchen arch Center for Environmental Health

Inflammation after 28d nose-only inhalation (rat)

4 week inhalation (sub-chronic): 6h/d, 5d/w, 4w

⇒ 28d hazard factor after instillation is similar (MWCNT (NM401) or smaller (DQ12) than after nose-only inhalation

In vitro / in vivo comparison

Acute Inflammatory Efficacy (in vivo) - Oxidative potency (in vitro)

In vivo: Mouse

NM instillation

Neutrophil influx (1d)

Slope of Dose-Response

In vitro:
Cell-free ROS (DCFH)
Slope of Dose-Response

⇒ Cell-free ROS is a good predictor for MetOx vs Carbonaceous NM induced inflammation

⇒ Cell-free ROS is NOT a good predictor for acute in vivo inflammation

In vitro / in vivo comparison: IC_{50} (cm²/cm²) for *in vitro* viability (WST1, 1d)) and *in* vivo inflammation (neutro.; 1d & 28d) Material **BET** Murine (in vitro; submerged) Rat Mouse Rat

(in vitro,

subm.)

NISSES

(in vivo)

Instillation

(applied dose)

284

(in vivo)

Inhalation

284

High Tox: $f_{haz} = 10 - 100$

					(mac)	Tu	20u	280	Printex90: f _{haz} = 1
Printex 90	272	25	54	>20	400*	0.067	1	1	Low Tox - $f_{haz} = 1 - 5$
MWCNT Mitsui-7	26	0.84*	0.38	0.3	63*	0.005	0.05	0.02	Med. Tox: f _{haz} = 5 - 10
MMCNT	10	2.4*	0.25	0.12	11*	0.006	U U3	0.02	

12 0.24 0.3 0.6* ZnO (NM110) 0.18 0.008 10 0.16* 0.2* Quartz >0.9 0.01 0.14 0.02

LA4+

MHS

(ALI)

MHS

(macs)

(m2/g)

NM401

LA4

(epithel)

* $IC_{50} \sim 4*IC_{12.5}$) (DQ12)

⇒ Mouse instill. (1d) is good qualitative predictor of rat inhalation (28d + 3d)

 \Rightarrow Mouse instill. (28d) is good quantitative predictor of rat inhalation (28d + 3d) (3 out of 4)

 \Rightarrow In vitro cell viability is a good predictor for 28d (+3d) inflammation (MHS; LA4+MHS: 4 out of 4/5)

⇒ In vitro cell viability requires higher dose than in vivo inflam. (~ 100-fold (1d) ~ 10-fold (28d))

Summary/Conclusions

- Surface area is a powerful dose metric not only for spherical, but also for fiber-like NMs
 - Clear classification into NMs with and without specific toxicity
- ☐ Tissue-delivered surface area dose (not exposure concentration) facilitates
 - Experimental determination of hazard factors
 - In vitro / in vivo translation ---- prediction of in vivo onset dose from in vitro data
- ☐ Instillation (in mice) is a good predictor for inhalation
 - 1d instillation ~ 1d acute inhalation (ventilator-assisted; in mice)
 - 28d instillation ~ Subchronic inhalation in rats (28d + 3d)
- In vitro cell viability is powerful predictor of acute (1d) and subchronic in vivo inflammation (28d)
- In vitro cell viability requires about 100-fold higher dose than acute inflammation (instillation)
 - ☐ For simples cell culture models (viability assay) we have to accept "non-realistic" high doses for hazard testing

Questions/Comments?

